What is pivot point and how it work?
Moving Average ek statistical concept hai jo data analysis mein istemal hota hai. Ye average calculation ka ek tarika hai jismein aap data points ki ek specified window (ya interval) ko lekar unka average calculate karte hain. Moving Average ko time series data mein commonly istemal kiya jata hai, jaise ki stock prices, temperature readings, sales data, etc.
Yahan kuch mukhtalif qisam ki Moving Averages aur unka istemal diya gaya hai:
Moving Averages ka istemal data smoothing, trend analysis, aur forecasting mein kiya jata hai. Ye alag-alag qisam ke Moving Averages ko combine karke bhi istemal kiya ja sakta hai taki zyada accurate aur robust analysis kiya ja sake.
Moving Average ek statistical concept hai jo data analysis mein istemal hota hai. Ye average calculation ka ek tarika hai jismein aap data points ki ek specified window (ya interval) ko lekar unka average calculate karte hain. Moving Average ko time series data mein commonly istemal kiya jata hai, jaise ki stock prices, temperature readings, sales data, etc.
Yahan kuch mukhtalif qisam ki Moving Averages aur unka istemal diya gaya hai:
- Simple Moving Average (SMA):
- Ismein har data point ki equal weight hoti hai.
- SMA calculate karne ke liye, aap specified window ke andar data points ka average calculate karte hain.
- SMA ka istemal trend analysis mein kiya jata hai. Jaise ki agar SMA ka short-term moving average long-term moving average ko cross kar raha hai, toh ye ek trend reversal ka indication ho sakta hai.
- Exponential Moving Average (EMA):
- EMA mein recent data points ko zyada weight diya jata hai compared to older data points.
- Ismein har data point ka weight exponentially decrease hota hai, jisse recent data points ka zyada impact hota hai.
- EMA ka istemal short-term trend analysis mein kiya jata hai, kyun ki ye recent changes ko zyada highlight karta hai.
- Weighted Moving Average (WMA):
- Ismein har data point ko different weights diya jata hai.
- Weighted moving average calculate karne ke liye, har data point ko uska specific weight assign kiya jata hai, jisse ki kuch data points ko zyada importance di jati hai compared to others.
- WMA ka istemal kuch specific data points ko emphasize karne ke liye kiya jata hai, jaise ki kuch exceptional events ko ya outliers ko ignore karte hue.
- Volume Weighted Moving Average (VWMA):
- Ismein har data point ka weight volume ke hisaab se hota hai.
- VWMA calculate karne ke liye, har data point ko uska trading volume ke saath multiply kiya jata hai, jisse ki higher volume wale data points ka zyada weight hota hai.
- VWMA ka istemal trading analysis mein kiya jata hai, jisse ki trading volume ke hisaab se trend ko analyze kiya ja sake.
Moving Averages ka istemal data smoothing, trend analysis, aur forecasting mein kiya jata hai. Ye alag-alag qisam ke Moving Averages ko combine karke bhi istemal kiya ja sakta hai taki zyada accurate aur robust analysis kiya ja sake.
تبصرہ
Расширенный режим Обычный режим